Microwave Structure Measurements on the Furan-Argon Complex

Stephen G. Kukolich*
Contribution from the School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, and the Department of Chemistry, University of Arizona, Tucson, Arizona 85721. Received September 10, 1982

Abstract

Rotational transitions were measured for furan-argon and [2-D]furan-argon using a pulsed nozzle Fourier transform spectrometer. Analysis of the data indicates that the argon atom is above the plane of furan, a distance of $3.54 \AA$ from the furan center of mass. The line between the argon and furan center of mass makes an angle of 11° with the furan c axis with the displacement toward the oxygen atom of furan. Measured rotational constants for argon-furan are $A=4802.340$ (3), $B=1362.612$ (2), and $C=1360.289$ (2) MHz. For argon-[2-D]furan, $A=4591.442$ (18), $B=1358.191$ (4), and $C=1338.736$ (2) MHz . An analysis of the centrifugal distortion and interaction potential is given for this complex. The stretching force constant is $k_{\mathrm{s}}=0.27 \mathrm{mdyn} / \AA$ and the approximate well depth is $\epsilon=236 \mathrm{~cm}^{-1}$.

Introduction

Rotational transitions have been measured and assigned for the argon-furan complex. The first brief report ${ }^{1}$ on this complex, using only the common isotopic form of furan, gave two possible structures. In the present work all spectroscopic data are given, more transitions have been measured for the common form, and measurements have been made on the argon-[2-D]furan complex. The data on the two isotopic species allow an unambiguous determination of the structure. Further data on the ordinary form allow a centrifugal distortion analysis which yields force constants and information on the potential between argon and furan. The present structure indicates that the argon atom is most closely associated with the α-carbon atoms of furan. This appears to be correlated with the higher reactivity of the α-carbon atoms. The slight tilt toward the oxygen atom is more surprising since oxygen or other electronegative atoms tend to be avoided in other complexes involving argon.

A large number of weakly bound molecular complexes containing a rare gas atom have been studied by molecular beam, optical, and microwave spectroscopy. This appears to be the first microwave structure of a complex between a rare gas atom and aromatic molecule. Complexes of tetrazine with helium and argon were studied by Smalley, Wharton, and Levy ${ }^{2}$ using laser induced fluorescence with a supersonic jet. There are a number of examples of other complexes with argon bound to a carbon atom. $\mathrm{ArClCN},{ }^{3} \mathrm{ArOCS},{ }^{4}$ and $\mathrm{ArCO}_{2}{ }^{5}$ are T -shaped structures with the argon-carbon distance ranging from $3.49 \AA$ for ArCO_{2} to 3.62 \AA for ArClCN . A hydrogen-bonded complex between furan and HCl was recently reported. ${ }^{6}$

Experimental Section

A very sensitive, high-resolution Fourier transform microwave spectrometer has been developed by Balle and Flygare. ${ }^{7.8}$ The rapid expansion of gas through the pulsed nozzle beam source provides effective cooling of translational and rotational degrees of freedom of the emerging gas mixture. Cooling the translational degrees of freedom allows the formation of large numbers of van der Waals complexes with binding energy on the order of $50 \mathrm{~cm}^{-1}$ or greater. The expansion cools the rotational distribution to an effective temperature of $2-10 \mathrm{~K}$ and this accounts, in part, for the high sensitivity of this spectrometer. The complex was formed by expanding a 4% mixture of furan in argon at 2 atm pressure through a $0.4-\mathrm{mm}$ nozzle into a high Q evacuated FabryPerot cavity. The gas supply to the nozzle was pulsed with a solenoid valve. Microwave pulses of $2.5 \mu \mathrm{~s}$ duration were used to produce the coherent, "free induction decay" molecular emission signal.

The coherent free induction decay from all transition frequencies within the $1-\mathrm{MHz}$ bandwidth of the cavity is then detected and amplified with a gated superheterodyne receiver. Coherent second detection with a balanced mixer is used on the receiver. The time domain signal is digitized, averaged, and Fourier transformed to give the frequency spectrum.

[^0]The [2-D]furan was made by decarboxylating furoic acid- $d ; 30 \mathrm{~g}$ furoic acid in 100 mL of quinoline was refluxed with 15 g of copper powder as described earlier ${ }^{2}$ for 3 -methylfuran. A 6 -in. Vigreux column was placed over the heated quinoline mixture and the furan was collected with a condenser and receiver at $0^{\circ} \mathrm{C}$. The furoic acid- d was made by hydrolyzing furoyl chloride in $\mathrm{D}_{2} \mathrm{O}$ and also by exchanging furoic acid in $\mathrm{D}_{2} \mathrm{O}$ and distilling off the water. The samples of [2-D]furan were analyzed by NMR, mass spectrometry, and microwave spectroscopy and shown to contain about 50% or greater [2-D]furan with most of the remaining component being furan. No deuterium substitution at the β position was detectable (<3\%).
The first set of transitions observed was a Q-branch series with $K_{\mathrm{P}}=$ $1 \rightarrow 2$ near 10 GHz . The spectrum for this series was shown earlier. ${ }^{1}$ The $2-7 \mathrm{MHz}$ spacing of lines indicated that the complex was a nearsymmetric rotor. For argon-furan a total of 38 transitions were observed in the 2722 to $17070-\mathrm{MHz}$ frequency range. These included $19 c$-dipole, Q-branch ($\Delta J=0$) transitions, $12 c$-dipole R-branch ($\Delta J=1$) transitions, and $7 a$-dipole R-branch transitions.
Four rotational transitions were observed for argon-[2-D]furan. These were all the stronger c-dipole, R-branch transitions. The $0_{\infty} \rightarrow$ $1_{01}, 2_{12} \rightarrow 2_{11}, 3_{22} \rightarrow 3_{21}$, and $4_{32} \rightarrow 4_{31}$ transitions of the [2-D]furan molecule could be observed using 0.4 atm pressure behind the pulsed nozzle source. No lines were found for the [2,5-D]furan molecule, however, indicating that the sample was indeed [2-D]furan. The possibility of [3-D]furan or [3,4-D]furan was eliminated by NMR evidence.

Results and Analysis

The measured transitions for argon-furan were analyzed by carrying out least-squares fits to the observed frequencies. In the first fit (fit I) the adjustable parameters used were the rotational constants A, B, and C and the symmetric-top distortion parameters $D_{\mathrm{J}}, D_{\mathrm{JK}}$, and D_{K}. The measured and calculated transition frequencies are given in Table I for fit I and fit II. For fit II the parameters $A^{\prime}, B^{\prime}, C^{\prime}, \tau_{\text {aaaa, }}, \tau_{b b b b}, \tau_{c c e c}, \tau_{1}$, and τ_{2} as described by Kirchhoff ${ }^{10}$ were used. Values for the parameters used in these fits are given in Table II. It was expected that since the rotational constant for this complex indicate that it is nearly a prolate

[^1]Table I. Measured and Calculated Transition Frequencies (in MHz) for the Argon-Furan Complex. Fit I Uses the Parameters A, B, C, D, D_{JK}, and D_{K} While Fit II Uses $A^{\prime}, B^{\prime}, C^{\prime}, \tau_{a a a a}, \tau_{b b b b}, \tau_{c c c c}, \tau_{1}$, and τ_{2}

$\begin{gathered} \text { transition } \\ J\left(K_{\mathrm{P}}, K_{\mathrm{O}}\right) \rightarrow J^{\prime} \\ \left(K_{\mathrm{P}}, K_{\mathrm{O}}\right) \\ \hline \end{gathered}$	measd frequency	calcd fit I	$\delta_{\text {I }}$	calcd fit II	$\delta^{\text {II }}$	exptl std dev
$0(0,0)-1(0,1)$	2722.894	2722.880	0.014	2722.881	0.013	0.009
4(2,3)-5 (1,5)	3272.891	3272.880	0.011	3272.886	0.005	0.004
4(2,2)-5(1,4)	3307.685	3307.704	-0.019	3307.694	-0.008	0.003
7(0.7)-7(1,7)	3406.835	3406.866	-0.031	3406.835	0.000	0.003
$6(0,6)-6(1,6)$	3415.359	3415.356	0.003	3415.359	0.000	0.003
$5(0,5)-5(1,5)$	3422.663	3422.645	0.018	3422.664	-0.001	0.003
$4(0,4)-4(1,4)$	3428.750	3428.727	0.022	3428.751	-0.001	0.002
3(0,3)-3(1,3)	3433.621	3433.598	0.022	3433.618	0.003	0.002
2(0,2)-2(1,2)	3437.268	3437.255	0.014	3437.272	-0.004	0.003
$1(0,1)-1(1,1)$	3439.702	3439.694	0.009	3439.704	-0.002	0.001
$0(0,0)-1(1,0)$	6164.898	6164.896	0.002	6164.901	-0.003	0.001
$3(1,2)-4(0,4)$	7442.717	7442.708	0.009	7442.717	0.000	0.003
1(0,1)-2(1,1)	8889.852	8889.855	-0.003	8889.855	-0.003	0.003
4(1,3)-5(0,5)	10159.902	10159.891	-0.012	10159.901	0.001	0.003
$7(1,6)-7(2,6)$	10285.561	10285.593	-0.032	10285.538	0.023	0.005
$6(1,5)-6(2,5)$	10294.950	10294.950	0.000	10294.939	0.011	0.002
5(1,4)-5(2,4)	10302.987	10302.971	0.016	10302.981	0.005	0.003
$4(1,3)-4(2,3)$	10309.674	10309.656	0.019	10309.674	0.000	0.003
3(1,2)-3(2,2)	10315.014	10315.005	0.009	10315.023	-0.009	0.002
2(1,1)-2(2,1)	10319.022	10319.016	0.060	10319.030	-0.008	0.004
2(1,2)-2(2,0)	10325.973	10325.986	-0.013	10325.983	-0.010	0.006
3(1,3)-3(2,1)	10328.930	10328.947	-0.018	10328.936	-0.007	0.002
4(1,4)-4(2,2)	10332.884	10332.901	-0.018	10332.886	-0.002	0.003
$5(1,5)-5(2,3)$	10337.935	10337.854	-0.018	10337.840	-0.005	0.006
$6(1,6)-6(2,4)$	10343.811	10343.810	0.001	10343.809	0.002	0.005
$7(1,7)-7(2,5)$	10350.817	10350.779	0.038	10350.805	0.013	0.005
$3(1,3)-4(1,4)$	10885.375	10885.372	0.003	10885.375	0.000	0.002
$3(3,1)-4(3,2)$	10888.148	10888.143	0.005	10888.137	0.011	0.004
$3(2,1)-4(2,2)$	10889.326	10889.314	0.011	10889.324	0.002	0.004
$3(0,3)-4(0,4)$	10890.243	10890.243	0.000	10890.243	0.000	0.003
$3(1,2)-4(1,3)$	10894.661	10894.663	-0.003	10894.660	0.001	0.003
2(0,2)-3(1,2)	11615.657	11615.664	-0.007	11615.657	0.000	0.003
5(1,4)-6(0,6)	12875.328	12875.324	0.004	12875.327	0.001	0.002
4(1,3)-5(1,4)	13617.375	13617.378	-0.003	13617.378	-0.003	0.005
$3(0,3)-4(1,3)$	14342.185	14342.198	-0.013	14342.186	-0.001	0.003
1(1,0)-2(2,0)	15766.860	15766.856	-0.004	15766.867	-0.007	0.003
$1(1,1)-2(2,1)$	15769.175	15769.178	-0.003	15769.182	-0.007	0.004
4(0,4)-5(1,4)	17069.324	17069.333	-0.009	17069.321	0.003	0.003

Table II. Best Fit Parameters Obtained from Fit I

parameter	value
A	$4802.340 \pm 0.003 \mathrm{MHz}$
B	$1362.612 \pm 0.002 \mathrm{MHz}$
C	$1360.289 \pm 0.002 \mathrm{MHz}$
D_{J}	$5.27 \pm 0.03 \mathrm{kHz}$
D_{JK}	$29.40 \pm 0.08 \mathrm{kHz}$
D_{K}	$-24.0 \pm 0.6 \mathrm{kHz}$
Table III. Best Fit Parameters Obtained from Fit II	
parameter	value, MHz
A^{\prime}	4802.349 ± 0.017
B^{\prime}	1362.558 ± 0.016
C^{\prime}	1360.344 ± 0.017
$\tau_{a a a a}$	-0.048 ± 0.015
$\tau_{b b b b}$	-0.0208 ± 0.0014
$\tau_{\text {cccc }}$	-0.0215 ± 0.0014
τ_{1}	-0.181 ± 0.004
τ_{2}	-0.0425 ± 0.0014

symmetric rotor ($B-C=2 \mathrm{MHz}$), the $D_{\mathrm{J}}, D_{\mathrm{JK}}$, and D_{K} distortion parameters would give a very good fit to the data. The fit obtained using $D_{\mathrm{J}}, D_{\mathrm{JK}}$, and D_{K} was not as good as expected but the fit using the τ 's was somewhat better. The standard deviation for fit I was 0.016 MHz and for fit II it was 0.007 MHz . The spectroscopic parameters from fit I are given in Table II and those from fit II are given in Table III. The indicated errors in Table II are the statistical errors for the fit, whereas the errors in Table III include the contribution to the error from the experimental standard deviation for the measured lines. The A, B, and C and A^{\prime}, B^{\prime}, and C^{\prime} rotational constants are in reasonably good agreement,

Table IV. Measured and Calculated Transition Frequencies for [2-D]Furan-Argon. DATA' Is the Measured Frequency, Corrected for Centrifugal Distortion Effects. All Frequencies in MHz with $A=4591.442(18), B=1358.190(4)$, and $C=1338.736(2) \mathrm{MHz}$

$J\left(K_{\mathrm{P}}, K_{\mathrm{O}}\right)-J^{\prime}$ $\left(K_{\mathrm{P}}^{\prime}, K_{\mathrm{O}}\right)$	measd frequency	DATA ${ }^{\prime}$	calcd	δ
$3(1,2)-4(0,4)$	$7484.069(6)$	7485.101	7485.107	-0.006
$1(0,1)-2(1,1)$	$8865.699(2)$			
	$8665.688(3)$	8666.007	8666.014	-0.007
	$8665.729(7)$			
$4(1,3)-5(0,5)$	$10139.465(3)$	10141.556	10141.551	0.005
$2(0,2)-3(1,2)$	$11391.262(4)$	11392.160	11392.155	0.005

indicating that contributions to the primed rotational constants from $\tau_{\alpha \beta \alpha \beta}$ terms are relatively small.

The $3_{12} \rightarrow 4_{04}, 1_{01} \rightarrow 2_{11}, 4_{13} \rightarrow 5_{05}$, and $2_{02} \rightarrow 3_{12}$ transitions in the [2-D]furan-argon complex were measured and the frequencies are given in Table IV. The DATA' frequencies which were fit to obtain rotational constants were obtained by adding a centrifugal distortion correction to the measured frequencies. The centrifugal distortion correction used is the shift which would be obtained for this molecule if $D_{\mathrm{J}}, D_{\mathrm{JK}}$, and D_{K} were the same as for argon-furan. Rotational constants obtained from this fit are $A=4591.442$ (18), $B=1358.190$ (4), and $C=1338.736$ (2) MHz .

Structure of the Complex

In order to determine the structure of the complex, the position of the argon atom was moved relative to the argon molecule, and rotational constants were calculated as a function of the distance R_{0} between argon and the furan center of mass and the angle θ

Figure 1. Structure and coordinate system for the argon-furan complex. The a_{f}, b_{f}, and c_{f} axes are the a, b, and c principal axes of furan. R_{CM} is indicated by the dashed line. $R_{\mathrm{CM}}=3.54 \dot{\AA} ; \theta=11^{\circ}$.

Table V. Results of Adjusting R_{0} and θ To Obtain the Best Fit to Pairs of Rotational Constants $(A, B),(B, C)$, and (A, C) and the Average Coordinates Are Given Below. The Rotational Constants A, B, and C Calculated with These Coordinates Are Also Given. The R_{0} and θ Values Listed Are "Best Fit" Values

	(A, B)	(B, C)	(A, C)	av
R_{0}, \AA	3.54456	3.54456	3.54227	3.54380
$\theta, \operatorname{deg}$	11.3002	10.3218	11.2984	10.9735
A, MHz	4802.34	4783.79	4802.34	4795.97
B, MHz	1362.61	1362.61	1364.12	1363.11
C, MHz	1358.79	1360.28	1360.29	1359.80

between R_{0} and the c axis of furan. It was assumed that argon would be in a plane defined by the a and c axes of furan. It was further assumed the structure of furan remained unchanged on formation of the complex.

The model used to analyze the structure involves calculating moments of inertia of the complex from moments of inertia of furan and coordinates of argon relative to the center of mass of furan. ${ }^{11}$ It was noted ${ }^{12}$ that this approach is nearly equivalent to using the Kraitchman equations ${ }^{13}$ to calculate the structure, treating argon as the substituted atom. The equations for the moments of the complex (given below) follow from the parallel axis theorem of classical mechanics

$$
\begin{gathered}
I_{x x}=I_{b b}(\text { furan })+\mu R_{0}{ }^{2} \\
I_{y y}=I_{a a}(\text { furan })+\mu R_{0}{ }^{2} \cos ^{2} \theta \\
I_{z z}=I_{c c}(\text { furan })+\mu R_{0}{ }^{2} \sin ^{2} \theta \\
I_{y z}=-\mu R_{0}{ }^{2} \sin \theta \cos \theta
\end{gathered}
$$

where x, y, and z are respectively the $b_{\mathrm{f}}, a_{\mathrm{f}}$, and c_{f} axes shown in Figure $1, \mu=m$ (furan) m (argon) $/(m$ (furan) $+m$ (argon)), and $R_{0}=$ the distance between argon and the furan center of mass. The above inertia tensor is diagonalized to get moments for the complex. The moments for furan were obtained from rotational constants obtained from earlier work. ${ }^{14}$

The results of varying R_{0} and θ to obtain the best fit to the pairs of rotational constants $(A, B),(B, C)$, and (A, C) are shown in Table VI. The results given in Table V are independent of the sign of θ since the inertia tensor for furan is symmetric with respect to reflections in planes containing two principal axes. We note that the different sets of rotational constants give somewhat different structures and this is interpreted as due to large vibrational amplitudes of argon relative to furan. With the results obtained we

[^2]Table VI. Experimental and Calculated Values of Changes in Rotational Constants $\delta A, \delta B$, and δC on Deuterium Substitution at the Furan 2 Position for the Furan-Argon Complex. Frequencies in MHz. Results for the Average Structure and for Structures Determined from $(A, B),(B, C)$, and (A, C) Pairs of Rotational Constants and for Positive and Negative Values of θ

	δA	δB	δC	θ
experimental	210.90	4.42	21.55	
average	211.41	5.12	21.72	10.97
(A, B)	211.97	5.13	21.59	11.30
(B, C)	210.31	5.10	21.92	10.32
(A, C)	211.97	5.13	21.63	11.30
average	204.11	8.62	24.66	-10.97
(A, B)	204.46	8.71	24.63	-11.30
(B, C)	203.43	8.42	24.68	-10.32
(A, C)	204.46	8.72	24.68	-11.30

give the structure parameters $\theta=11(1)^{\circ}$ and $R_{0}=3.54$ (1) \AA, with reasonable estimates of the accuracy of the parameters.
The rotational constants for the argon-[2-D]furan substituted complex, however, provide additional information since the principal axis system for [2-D]furan is rotated and displaced with respect to the furan principal axis system. On substitution of deuterium at the 2 position of furan, the rotational constants for the complex change by amounts $\delta A=210.90, \delta B=3.32$, and δC $=21.55 \mathrm{MHz}$. We can calculate these changes in rotational constants for positive and negative values of θ. The results of the calculation are shown in Table VI. We note that the shifts for positive values of θ are much more consistent with the experimental shifts. For the calculation using average values of R_{0} and θ, positive θ gives a standard deviation for shifts of 0.44 MHz whereas negative θ gives a standard deviation of 4.95 MHz . This factor of 10 difference in the quality of the fit is interpreted as strong evidence for a positive value of θ, that is, a displacement toward the oxygen atom.

Additional evidence for the structure with positive θ is obtained from the Kraitchman equations. ${ }^{13}$ The distance (r) of a substituted atom from the center of mass of the parent molecule is given by $2 \mu r^{2}=\Delta I_{x}+\Delta I_{y}+\Delta I_{z}$, where $\mu=\Delta m M /(\Delta m+M)$ with Δm the change in mass of the substituted atom, M the mass of the parent molecule, and the Δr 's being changes in principal moments of inertia on substitution. For the hydrogen atom at position 2 on furan in the complex we get $r=2.456 \AA$. When this distance is calculated for the positive θ structure, we get $r=2.483 \AA$, but when r is calculated for the negative θ structure, $r=2.641 \AA$. Again a displacement argon atom toward the oxygen atom in furan is strongly favored.

Centrifugal Distortion Constants and the Argon-Furan Potential

Information on the intermolecular potential between argon and furan can be obtained from the centrifugal distortion constants. An estimate of the stretching force constant k_{s} for the argon-furan bond and for the well depth may be obtained from the distortion constant D_{J} as described earlier. ${ }^{14}$ The argon and furan are treated as localized, structureless masses held together by a spring with force constant k_{s}. We use experimental values of D_{J} to obtain the force constant k_{s} from the relation

$$
k_{\mathrm{s}}=8 \pi^{3}\left(\mu R_{0}\right)^{2}\left[\left(B^{2}+C^{2}\right)^{2}+2\left(B^{4}+C^{4}\right)\right] / \hbar D_{\mathrm{J}}
$$

This is a reasonably good approximation for argon-furan since the angle between R_{0} and the a axis is only about 2°. We obtain a stretching force constant for 0.0269 millidyne $/ \AA$. If we use a Lennard-Jones 6-12 potential ${ }^{8}$ to describe the argon furan interaction we find that the equilibrium, pseudo-diatomic rotation constant $B_{c}{ }^{*}$ is given by $2 B_{c}{ }^{*}=\nu_{\mathrm{s}} / 18-\left(\left(\nu_{\mathrm{s}} / 18\right)^{2}-4\left(\nu_{\mathrm{s}} / 18\right) B_{0}{ }^{*}\right)^{1 / 2}$. ν_{s} is the stretching frequency. This leads to an equilibrium bond length r_{e} from which we obtain the well depth using $\epsilon=k_{s} r_{e}{ }^{2} / 72$ to get $\epsilon \simeq 236 \mathrm{~cm}^{-1}$. This is a strong bond in comparison with other argon complexes as we see from data in Table VII. ${ }^{15}$ We

[^3]Table VII. Comparison of Force Constants from the Pseudo-Diatomic Model, k_{S} (P.D.), from a Two-Component Force Field Model, k_{s} (F.F.); Well Depths, ϵ, and Bending Force Constants, k_{θ}, for Argon-Furan and Related Complexes

	$\begin{gathered} k_{\mathrm{s}}(\text { P.D. }), \\ \text { mdyn } / \AA \end{gathered}$	$\begin{gathered} \epsilon, \\ \mathrm{cm}^{-1} \end{gathered}$	$\begin{gathered} k_{\mathbf{s}}(\mathrm{F} . \mathrm{F} .), \\ \operatorname{mdyn} / \AA \end{gathered}$	$\begin{gathered} k_{\theta} \\ \operatorname{mdyn} / \AA \end{gathered}$	bond length, A
argon-furan	0.0269	236	0.0272	0.0354	3.54
argon- ClCN^{a}		172	0.0185	0.0333	3.65
argon- $\mathrm{BF}_{3}{ }^{\text {b }}$	0.0211	163			3.33
argon- $\mathrm{CO}_{2}{ }^{\text {c }}$		148	0.0174	0.0165	3.49
argon- $\mathrm{HCl}^{\text {d, }}$, e	0.0117	128	0.0164	0.0015	
argon- $\mathrm{HBr}^{\text {d }}$	0.0076	89	0.0166	0.0014	

${ }^{a}$ See ref $3 ; \epsilon$ calculated from data in ref 3 . ${ }^{b}$ Values calculated using data in ref $15 .{ }^{c}$ See ref $5 ; e$ from data in ref 5 . ${ }^{d}$ See M. R. Keenan, E. J. Campbell, T. J. Balle, L. W. Buxton, T. K. Minton, P. D. Soper, and W. H. Flygare, J. Chem. Phys., 72, 3070 (1980).
${ }^{e}$ See M. R. Keenan, L. W. Buxton, E. J. Campbell, T. J. Balle, and W. H. Flygare, J. Chem. Phys., 73, 3523 (1980).

Table VIII. Derivatives of Rotational Constants for Argon-Furan with Respect to Changes in R_{0} and θ

$$
\begin{array}{ll}
\partial A / \partial R_{0}=12.64 \mathrm{MHz} / \AA & \partial A / \partial \theta=1133 \mathrm{MHz} \\
\partial B / \partial R_{0}=656.2 \mathrm{MHz} / \AA & \partial B / \partial \theta=87.4 \mathrm{MHz} \\
\partial C / \partial R_{0}=651.5 \mathrm{MHz} / \AA & \partial C / \partial \theta=90.8 \mathrm{MHz} \\
\hline
\end{array}
$$

note that the bending constant k_{θ} is similar to that obtained for $\mathrm{Ar}-\mathrm{ClCN}$.

The τ centrifugal distortion constants may also be used to obtain information on the force constants holding the complex together. We consider a simple force field represented by k_{s} and k_{θ} where
k_{s} is associated with changes in the bond length R_{0} and k_{θ} with changes in θ. There will also be a force constant for motion of the argon in the direction of the b axis of the complex but since first derivatives of moments of inertia with respect to this coordinate vanish, it will not contribute to the τ 's. We will neglect τ 's of the form $\tau_{\alpha \beta \alpha \beta}$ with $\alpha \neq \beta$. In this case we can write

$$
\tau_{\alpha \alpha \beta}=-2 h \sum_{i} \frac{\partial G_{\alpha}}{\partial R_{i}} \frac{\partial G_{\beta}}{\partial R_{i}}\left(\frac{1}{k_{i}}\right)
$$

where $\tau_{\alpha \alpha \beta \beta}$ is in Hz, G_{α} are rotational constants, and k_{i} are the force constants k_{s} and k_{θ}. The derivatives $\partial G / \partial R_{i}$ were calculated numerically and values are given in Table VIII. Using the experimental results for $\tau_{a a a a}, \tau_{b b b b}$, and $\tau_{c c c c}$ with the above model gives $k_{\mathrm{s}}=0.0272(8) \mathrm{mdyn} / \AA$ and $k_{\theta}=0.0354 \mathrm{mdyn} \AA$.
The discovery and characterization of the furan-argon complex and the benzene- HCl complex ${ }^{11}$ indicates the aromatic π-electron system in ring compounds can act either as a Lewis acid or a Lewis base. This suggests that interactions between π-electron systems of two aromatic ring compounds should be important in the formation of stacked complexes.
Acknowledgment. Equipment was purchased using support from the National Science Foundation. Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this research. J. A. Shea was very helpful with spectral assignments in the early phases of this work. Discussions with Peter Beak on synthesis of [2-D]furan and structure of the complex played an important role in the successful completion of this project.

Registry No. Furan-Ar, 84812-22-6; [2-D]furan-Ar, 84812-23-7.

pH Jump: Kinetic Analysis and Determination of the Diffusion-Controlled Rate Constants

Menachem Gutman,*1 Esther Nachliel, Eli Gershon, Rina Giniger, and Ehud Pines
Contribution from the Department of Biochemistry, Tel-Aviv University, Tel-Aviv 69978, Israel. Received August 16, 1982

Abstract

Excitation of proton-emitter compounds such as 8 -hydroxypyrene-1,3,6-trisulfonate or sulfonated β-naphthol derivatives by short, intensive laser pulses discharges protons into the solution. These protons are readily detected by their reaction with pH indicators. The kinetics are followed by transient light absorption techniques with a time resolution of 100 ns . The observed proton cycle, protonation and relaxation of the indicator, is a sum of simultaneous first- and second-order reactions between the various reactants. This dynamic is a complex function of all rate constants and reactant concentrations. In the present study, we employed a numerical solution of nonlinear differential rate equations to simulate the dynamics of the observed proton cycle. This analysis permits a direct determination of the diffusion-controlled rate constants of all participating reactions with an accuracy better than 20%.

The laser-induced pH jump ${ }^{2.3}$ employs the pH shift of electronically excited aromatic alcohols ${ }^{4}$ for rapid acidification of aqueous solutions. Excitation of a proton emitter, such as hydroxypyrenetrisulfonate ${ }^{5}$ in dilute solution by a short laser pulse,

[^4]lowers the pH by 3-4 log units within a few nanoseconds. ${ }^{3}$ The protons dissociate from the excited molecules and are detected by their reaction with pH indicator present in the solution.

The proton cycle consists of two sets of temporally resolved reactions: the reactions between the excited molecules and the reactions between the ground-state compounds.

[^5]
[^0]: *Address correspondence to this author at the University of Arizona.

[^1]: (1) S. G. Kukolich and J. A. Shea, J. Chem. Phys., 77, 5242 (1982)
 (2) R. E. Smalley, L. Wharton, and D. H. Levy, J. Chem. Phys., 68, 2487 (1978).
 (3) M. R. Keenan, D. B. Wozniak, and W. H. Flygare, J. Chem. Phys,, 75, 631 (1981)
 (4) S. J. Harris, K. C. Janda, S. E. Novick, and W. Klemperer, J. Chem Phys., 63, 881 (1975).
 (5) J. M. Steed, T. A. Dixon, and W. Klemperer, J. Chem. Phys., 70, 4095 (1979)
 (6) J. A. Shea and S. G. Kukolich, J. Am. Chem. Soc., 104, 4999 (1982)
 (7) T. J. Balle and W. H. Flygare, Rev. Sci. Instrum., 52, 33 (1981).
 (8) T. J. Balle, E. J. Campbell, M. R. Keenan, and W. H. Flygare, J. Chem. Phys., 72, 922 (1980); E. J. Campbell, L. W. Buxton, T. J. Balle, and W. H. Flygare, ibid., 74, 813 (1981).
 (9) D. M. Burness, J. Org. Chem., 21, 102 (1956).
 (10) W. M. Kirchhoff, J. Mol. Spectrosc., 41, 333 (1972).

[^2]: (11) W. G. Read, E. J. Campbell, and Giles Henderson, J. Am. Chem. Soc. (to be published).
 (12) R. H. Schwendeman, private communication.
 (13) W. Gordy and R. L. Cook, "Microwave Molecular Spectra", Wiley, New York, 1970, p 511; J. Kraitchman, Am. J. Phys., 21, 17 (1953).
 (14) F. Mata, M. C. Martin, and G. O. Sorensen, J. Mol. Struct., 48, 159 (1978); B. Bak, D. Christensen, W. B. Dixon, L. Hansen-Nygaard, J. R. Andersen, and M. Schottlănder, J. Mol. Spectrosc., 9, 124 (1962).

[^3]: (15) K. C. Janda, L. S. Bernstein, J. M. Steed, S. E. Novick, and W. Klemperer, J. Am. Chem. Soc., 100, 8074 (1978).

[^4]: (1) During the 1982-1983 academic year, refer correspondence to M. Gutman, Department of Chemistry, M.I.T., Cambridge, MA 02139.
 (2) Gutman, M.; Huppert, D. J. Biochem. Biophys. Methods 1979, 1, 9-19.
 (3) Gutman, M.; Huppert, D.; Pines E. J. Am. Chem. Soc. 1981 103, 3709-3713.
 (4) Forster, Th. Z. Elektrochem. 1950, 54, 42-46.

[^5]: (5) Abbreviations: PhOH and PhO^{-}are the neutral and anionic forms of the proton emitter; HIn and In^{-}, the protonated and deprotonated forms of the indicator; HPTS, 8 -hydroxypyrene-1,3,6-trisulfonate; BCG, bromocresol green.

